Automatic Light System

An automatic light system is a setup designed to automatically control the lighting based on the presence or absence of individuals within its detection range. This system will also give the indication of motion detected by blinking the led 3 times.

  • VSDSquadron Mini Board
  • IR Sensor
  • LEDs
  • Bread Board
  • USB Cable
  • Jumper Wires
IR SENSOR, LEDVSD SQUADRON BOARD
VCC OF IR3.2V
GND OF IRGND
OUT OF IRPIN 4
LEDPIN 6
  • The IR sensor is strategically placed in a location where it can detect the movement of individuals within its sensing range.
  • The IR sensor continuously monitors its surroundings for any changes in infrared radiation caused by the movement of individuals.
  • When someone enters the detection range of the IR sensor, it detects the change in radiation and triggers an output signal.
  • When the IR sensor detects motion, it sends a signal to the microcontroller which then activates the LED lighting system. The LED lights up, providing illumination and the led will blink 3 times in the area where motion is detected which gives indication of motion detected.
//These include the necessary header files (ch32v00x.h and debug.h) for the CH32V microcontroller and debugging purposes.
#include <ch32v00x.h>
#include <debug.h>
//pin configuration
void GPIO_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure = {0}; //structure variable GPIO_InitStructure of type GPIO_InitTypeDef which is used for GPIO configuration.

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE); // to Enable the clock for Port D
//pin 4 OUT PIN FOR IR SENSOR
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 ; // Defines which Pin to configure
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; // Defines Output Type
GPIO_Init(GPIOD, &GPIO_InitStructure);
//pin 6 IS LED PIN
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 ; //
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // Defines Output Type
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // Defines speed

GPIO_Init(GPIOD, &GPIO_InitStructure);

}
//main function

int main(void)
{
uint8_t IR = 0;
uint8_t set=1;
uint8_t reset=0;
uint8_t a=0;
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);// Configuring NVIC priority group
SystemCoreClockUpdate();// Update System Core Clock
Delay_Init();//Initialize Delay
GPIO_Config();//Call GPIO configuration function

while(1)
{
IR = GPIO_ReadInputDataBit(GPIOD, GPIO_Pin_4);
if (IR==1)//Read state of Pin 4 (IR sensor)
{ // for blinking of led three times upon motion detection
	for(a=0;a<3;a++){
GPIO_WriteBit(GPIOD, GPIO_Pin_6, set);
Delay_Ms(200);
GPIO_WriteBit(GPIOD, GPIO_Pin_6,reset);
Delay_Ms(100);}

}

}
}
  • Security Lighting : These systems can be used for security lighting in outdoor spaces, such as gardens, driveways, and pathways, to deter intruders and provide visibility at night.
  • Home Automation : Automatic light systems can be installed in homes, particularly in areas such as hallways, staircases, and bathrooms, where lights need to be turned on/off based on occupancy.
  • Energy Efficiency : Automatic light systems contribute to energy conservation by ensuring that lights are not left on unnecessarily when the area is unoccupied.
  • Accessibility : These systems can improve accessibility for individuals with disabilities by providing automatic illumination in response to their movement.

During the VSD Squadron mini Internship, I embarked on a journey exploring various aspects of VLSI system design on the RISC-V architecture, alongside open-source EDA tools.

Installation and Setup : I began by setting up the development environment, including installing VirtualBox for running Ubuntu and configuring the RISC-V toolchain, Yosys, Icarus Verilog, and GTKWave.

Understanding RISC-V Architecture : I delved into the fundamentals of the RISC-V architecture, learning about its open, versatile instruction set, instruction formats, operand types, and various instruction types and their opcodes.

Lab-Based Tasks : Engaging in lab-based tasks, I wrote and compiled C programs, simulated them using RISC-V GCC compiler and Spike, and analyzed the assembly code. You also performed functional simulation experiments using Verilog netlists and testbenches, utilizing Icarus Verilog and GTKWave.

Spike and Proxy Kernel : I explored the Spike simulator and Proxy Kernel, understanding their roles in simulating RISC-V programs and debugging them effectively.

Mini Project : Automatic Light System: As part of my project work, I implemented an automatic light system using the VSD Squadron mini board,
IR sensor, and LEDs, wrote C code to control the system, detecting motion with the IR sensor and indicating it through LED illumination.

Registration for Ethical RISC-V IoT Workshop

Welcome to Ethical RISC-V IoT Workshop

The “Ethical RISC-V IoT Workshop” at IIIT Bangalore, organized in collaboration with VSD, is a structured, educational competition aimed at exploring real-world challenges in IoT and embedded systems. Participants progress through three stages: building an application, injecting and managing faults, and enhancing application security. The event spans from May 9 to June 15, 2024, culminating in a showcase of top innovations and an award ceremony. This hands-on hackathon emphasizes learning, testing, and securing applications in a collaborative and competitive environment.

Rules :
  1. Only for Indian Student whose college is registered under VTU
  2. Only team of 2 members can Register
  3. Use only VSDSquadron Mini resources for product development
Awards :
  1. Prize money for final 10 Team
  2. 3 Winner team’s Product will be evaluated for Incubation
  3. 7 consolation prizes
  4. Completion Certificate to final round qualifier
  5. Chance to build a Proud Secured RISC-V Platform for India

Date for Registration : 9th May - 22nd May, 2024
Hackathon Inauguration : 23rd May 2024

VSDSquadron (Educational Board)

VSDSquadron, a cutting-edge development board based on the RISC-V architecture that is fully open-source. This board presents an exceptional opportunity for individuals to learn about RISC-V and VLSI chip design utilizing only open-source tools, starting from the RTL and extending all the way to the GDSII. The possibilities for learning and advancement with this technology are limitless.

Furthermore, the RISC-V chips on these boards should be open for VLSI chip design learning, allowing you to explore PNR, standard cells, and layout design. And guess what? vsdsquadron is the perfect solution for all your needs! With its comprehensive documentation and scalable labs, thousands of students can learn and grow together.

VSD HDP (Hardware Design Program) Duration-10 Week

With VSD Hardware Design Program (VSD-HDP),  you have the opportunity to push the boundaries of what exist in open source and establish the new benchmark for tomorrow.

It will leverage your degree in Electrical or Computer Engineering to work with

  • Programmable logic
  • Analog/ digital IP
  • RISC-V
  • Architecture & microprocessors
  • ASICs and SoCs on high-density digital or RF circuit cards
  • Gain hands-on knowledge during design validation and system integration.

Sounds exciting to just get started with expert mentors, doesn’t it? But we are looking for the next generation of learners, inventors, rebels, risk takers, and pioneers.

“Spend your summer working in the future !!”

Outcomes of VSD Online Research IP Design Internship Program

  1. Job opportunities in Semiconductor Industry
  2. Research work can be submitted to VLSI International journals
  3. Participate in Semiconductor International Conference with Internship Research Work
  4. Paper Publications in IEEE Conference and SIG groups
  5. Tape out opportunity and IP Royalty
  6. Interact with world class Semiconductor designer and researchers
  7. Academic professions where more research projects are encouraged.
  8. All the above research and publication work will help colleges and institutes to improve accreditation levels.

Know More Information

VSD – Intelligent Assessment Technology (VSD-IAT)

VSD – Intelligent Assessment Technology (VSD-IAT) is expertly built training platform and is suited for designer requirements. Semiconductor companies understand the value of training automation and Engineer performance enhancement, and do not need to be convinced of the impact of a virtual platform for learning. VSD trainings are quick, relevant, and easy to access from any device at any time zone.

VSD Intern Webinars

VSD Interns made it happen !!

VSD is working towards creating innovative talent pool who are ready to develop design and products for the new tech world. VSD believes in “Learning by doing principle” , and always prepare the student to apply the knowledge learned in the workshops, webinars and courses. We always push our students to work on new designs, test it and work continuously till it becomes the best performing design. Any student who enrolls to VSD community starts working with small design and grows with us and develops a tapeout level design with complete honesty and dedication towards the Work !!

Check out VSD Interns Achievement!

VSDOpen Online Conference

Welcome to the World’s only online conference in Semiconductor Industry VSDOpen Conference. With enormous support and global presence of audience from different segments of industrial lobby and academia made a highly successful event. Evolution is change in the genetic makeup of a population over time, online conference is one kind evaluation everyone adapt soon. 

  • VSDOpen 2022 is an online conference to share open-source research with the community and promote  hardware design mostly done by the student community.
  • VSDOpen 2022 is based on the theme “How to lower the cost to learn, build, and tapeout chips ?”  , which will provide a platform to community to build stronger designs and strengthen the future of Chip design.
  • VSDOpen is envisioned to create a community based revolution in semiconductor hardware technology.
  • The open source attitude is required to bring out the talent and innovation from the community who are in remote part of world and have least access to the technologies.  And now Google support will help to bring the vision to execution by VSD team

VSD Online Course by Kunal Ghosh

VSD offers online course in complete spectrum of vlsi backend flow from RTL design, synthesis and Verification, SoC planning and design, Sign-off analysis, IP Design, CAD/EDA automation and basic UNIX/IT, Introduction to latest technology – RISC-V, Machine intelligence in EDA/CAD, VLSI Interview FAQ’s.

Current Reach – As of 2021, VSD and its partners have released 41 online VLSI courses and was successfully able to teach  ~35900 Unique students around 151 countries in 47 different languages, through its unique info-graphical and technology mediated learning methods.

Enquiry Form